STRUCTURE OF A GUAIANE-TYPE SESQUITERPENE ETHER FROM "SAN-SHION"

Hiroshi Hirota, Yoshiaki Tanahashi, and Takeyoshi Takahashi Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113

(Received in Japan 25 October 1975, received in UK for publication 11 November 1975)

It has been reported that the benzene extract of "San-shion" (mountain Shion the roots of a Ligularia genus)^{1,2} gives five volatile constituents (LA-LE, tentative names)¹ along with furanoligularenone² and ligularenolide ³ Four (LA, LC, LD, and LE) of the volatile constituents have been shown to be identical with cyperene, liguloxide, p-cymene, and limonene, respectively ^{la,b} Recently, Fujita and Fujita⁴ described the identity of LB with ogarukaya-ehter A, isolated from <u>Cymbopogon Georingii</u> (STEUD) A. CAMUS, and the structure (<u>1</u>) was proposed for ogarukaya-ether A based on biogenetic considerations ^{4b}. We wish to report evidences leading to the structure (<u>2</u>) for LB

No hydroxy nor carbonyl absorptions were observed in the IR spectrum of LB, a colorless liquid, $C_{15}H_{26}O$ (M⁺ at m/e 222), $[Ca]_{578}=-45^{\circ}$ (c = 2 2, $CHCl_3$) ^{la,b)} The PMR spectrum (in $CDCl_3$) shows the presence of two tertiary (δ 1 18 and δ 1 23, each 3H, s) and two secondary methyls (δ 0 87, 3H, d, J = 5 5 Hz and δ 0 89, 3H, d, J = 7 5 Hz) and the absence of olefinic proton. The absence of unsaturated carbon-carbon linkage was revealed by treatment of LB with CF_3CO_3H showing no consumption of the reagent A tricyclic saturated nature was thus suggested for LB in which an oxygen atom could exist as a part of ether linkage. ^{la,c)} The absence of signal due to -O-CH- shows that the two carbon atoms attached to the ether oxygen must be both tertiary Dehydrogenation of LB with 10% Fd-C yielded S-guaiazulene (major product) and Se-guaiazulene (minor product). These observations¹ suggest that LB is related to a guaiane skeleton (3)⁵ and lead to two alternative structures (<u>A</u> and <u>B</u>, without stereochemical considerations) for LB ^{la, 5}

The presence of ABC-type spin-spin couplings was shown for $\frac{1}{4}$ (1-epigualoxide^{6,7}) by the INDOR experiments⁸) $\text{CH}_{A}(6\beta-\text{H} \ \delta \ 2.32, q, J = 13 \text{ and } J = 6 \text{ Hz}, \text{H}_{B}(7\alpha-\text{H}) \cdot \delta \ 1.87, q, J = 8 \text{ and } J = 6 \text{ Hz}, \text{H}_{C}(6\alpha-\text{H}) \ \delta \ 1.63, d, J = 13 \text{ Hz}$ The same ABC-type spin-spin couplings were shown to be present in LB by the INDOR experiments (Fig 1) $\text{CH}_{A}(6\beta-\text{H}) \ \delta \ 2.28, q, J = 13 \text{ and } J = 6 5 \text{ Hz}, \text{H}_{C}(6\alpha-\text{H}) \ \delta \ 1.96, q, J = 9 \text{ and } J = 6 5 \text{ Hz}, \text{H}_{C}(6\alpha-\text{H}) \ \delta \ 1.69, d, J = 13 \text{ Hz}, \text{H}_{B} \text{ couples further with the vicinal protons on C}_{(8)}$ The structure <u>A</u> can only account for these observations, excluding the structure <u>B</u> (with a proton on C}_{(5)}) for LB.

Six $(\underline{4}, \underline{6}, 7)$ $\underline{5}, \underline{9}, \underline{6}, \underline{10}, \underline{7}, \underline{8}, \underline{7}$ and $\underline{10}^{11}$ among eight diastereomers (<u>2</u> and <u>4-10</u>, without consideration of their enantiomers) have been described for the structure <u>A</u> However, none of the spectral data of the six isomers were identical with those of LB. The structure of LB must therefore be represented by either <u>2</u> or <u>9</u> (or by one of their enantiomers)

Treatment of LB in CCl₄ with NBS under reflux gave a monobromo derivative $(\underline{11}, \underline{12})$ yield $18 \%^{(13)}$, an oil, $C_{15}H_{25}OBr'(M^{+} \text{ at m/e } 302 \text{ and m/e } 300)$, PMR (CDCl₃). $\delta 0 92$ (3H, diffused d), δ 1 20 (3H, s), δ 1 25 (3H, s), and δ 1 81 (3H, s, CH_2 -C-Br) The bromide (<u>11</u>) was heated under reflux with KOH-EtOH to give an olefin $(\underline{12}, y, \overline{60}\%)$, an oil, $C_{15}H_{24}O$ (M⁺ at m/e 220), PMR (CDCl₃) $\delta 0.88$ (3H, d, J = 6 Hz), $\delta 1.20$ (3H, s), $\delta 1.27$ (3H, s), $\delta 1.74$ (3H, s), and δ ca 5 65 (1H, m). Hydroboration of <u>12</u> yielded an alcohol (y 64 %), mp 84-85°, $C_{15}H_{26}O_2$ (M⁺ at m/e 238), v_{OH} ca. 3250 cm⁻¹, PMR (CDCl₃) δ 0 85 (3H, diffused d), δ 1.04 (3H, d, J = 7 Hz), δ 1 17 (3H, s), δ 1 26 (3H, s), and δ 3 93 (1H, m) As a <u>cis</u> relationship between C₍₃₎-OH and $C_{(4)}$ -H is required by the mode of formation, two alternative structures (<u>13</u> and <u>14</u>) are suggested for the alcohol The PMR spectra of the alcohol were measured using $Eu(fod)_3 - d_{27}$ as a shift reagent (Fig 2) PMDR experiments led to the assignment of signals as shown in Fig 2, when a proton on $C_{(2)}$ <u>cis</u> to the hydroxyl group is designated as H_{C} (cf <u>13</u> and <u>14</u>) The coupling constants in a first-order approximation are as follows $J_{A,14} = 7$, $J_{A,B} = 7$, $J_{B,C} = 2$, $J_{B,D} = 85$, $J_{C,D} = 135$, $J_{C,E} = 8$, $J_{D,E} = 105$, and $J_{E,F} = 10$ Hz The observations that $J_{D,E}$ was greater than $J_{C,E}$ and that a large shift was observed for H_E , favor the strucure <u>13</u> rather than $\underline{14}$ for the alcohol Thus, the structure $\underline{13}$ is suggested for the alcohol

The alcohol (<u>13</u>) was treated with Jones' reagent to give a five-membered ring ketone (<u>15</u>, y 77 %), mp 63-64°, $C_{15}H_{24}O_2$ (M⁺ at m/e 236), $v_{C=0}$ 1740 cm⁻¹, PMR (CDCl₃) & 0 89 (3H, d, J = 6 Hz, $C_{(10)}-CH_3$), & 1 03 (3H, d, J = 7 Hz, $C_{(4)}-CH_3$), & 1 16 (3H, s, $C_{(11)}-CH_3$), & 1 25 (3H, s, $C_{(11)}-CH_3$), and & ca. 2 20 (1H, q, J = 7 Hz, $C_{(4)}-H$, the protons on $C_{(2)}$ (2H, & ca. 2 0-2 5, m)

couple further with a $C_{(1)}$ -<u>H</u> When <u>15</u> was passed through a column of alumina, <u>15</u> isomerized¹⁴) to an α,β -unsaturated ketone (<u>16</u>, y almost quantitative), mp 57-58 5°, $C_{15}H_{24}O_2$ (M⁺ at m/e 236), v_{OH} ca 3250 and $v_{C=0}$ 1680 cm⁻¹, $\lambda_{max}^{\text{EtOH}}$ 242 nm ($\varepsilon = 9,000$), PMR (CDCl₃) δ 1 03 (3H, d, J = 6 Hz, $C_{(10)}$ -C<u>H</u>₃), δ 1 21 (3H, s, $C_{(11)}$ -C<u>H</u>₃), δ 1 24 (3H, s, $C_{(11)}$ -C<u>H</u>₃), and δ 1 67 (3H, s, $C_{(4)}$ -C<u>H</u>₃), no olefinic proton signal was observed These spectral data provide further support for the presence of an ether linkage of $C_{(5)}$ -O-C₍₁₁₎ (<u>A</u>) rather than $C_{(1)}$ -O-C₍₁₁₎ (<u>B</u>)

Hydrogenation (in AcOEt-AcOH, PtO₂) of the olefin (<u>12</u>) gave <u>9</u> (4-epi-LB), an oil, $C_{15}H_{26}O$ (M⁺ at m/e 222), PMR (CDCl₃) $\delta O 85$ (3H, diffused d), $\delta O 95$ (3H, d, J = 6 Hz), $\delta I 19$ (3H, s), $\delta I 25$ (3H, s), and $\delta 2 15$ (1H, q, J = ca 5 and J = ca 12 Hz), as a sole product, no <u>2</u> was found to be formed. The alcohol (<u>13</u>) was coverted to a tosylate (<u>17</u>), which without separation was then treated with LiAlH₁ (in THF, under reflux) to give <u>9</u>.

Finally, the ORD measurement on <u>15</u> showed a negative Cotton effect curve (a = -182), while that on 3-oxo-4-epigualoxide (3-oxoliguloxide) a positive Cotton effect curve (a = $+273^{9}$)

These observations lead to the structure $\underline{2}$ including absolute configuration for LB Thus, all the diastereomers represented by A have now been recorded

<u>Acknowledgement</u> The authors wish to thank Dr K Tori and Dr H Ishii, Shionogi Research Laboratory, Osaka, and Dr. Y Fujita, Government Industrial Research Institute, Osaka, for their valuable discussions

References

- a) M Okazaki, Y Ishizaki, Y. Tanahashi, H Hirota, and T Takahashi, Yakugaku Zasshi, <u>94</u>, 881 (1974)
 b) Y Ishizaki, M Okazaki, M Wada, Y Tanahashi, and T Takahashi, 12th Symposium on the Chemistry of Perfumes, Terpenes, and Essential Oils, Hamamatsu, 1968, Symposium papers, p 53
 c) Y Tanahashi, S Tomoda, and T Takahashi, Bull Chem Soc Japan, <u>42</u>, 2076 (1969)
- 2) F Patil, G Ourisson, Y Tanahashi, M Wada, and T Takahashi, Bull Soc Chim France, 1968, 1047
- 3) Y Ishizaki, Y Tanahashi, T. Takahashi, and K Tori, Tetrahedron, <u>26</u>, 5387 (1970)
- 4) a) S Fujita and Y Fujita, Yakugaku Zasshi, <u>92</u>, 1285 (1972) b) S Fujita and Y Fujita, 16th Symposium on the Chemistry of Perfumes, Terpenes, and Essential Oils, Hirosaki, 1972, Symposium papers, p 1⁴
- 5) The presence of a five-membered ring in LB was received support from the formation of <u>15</u> No other formulations such as those involving a 4,10-oxide molety or structures with a spirc carbon atom are compatible with the observed data described in the text
- 6) C. Ehret and G Ourisson, Bull Soc Chim France, 1968, 2629
- 7) H Ishii, T Tozyo, M Nakamura, and H Minato, Tetrahedron, 26, 2911 (1970)
- 8) e g a) E. B. Baker, J Chem Phys., <u>37</u>, 911 (1962) b) R Kaiser, ibid, <u>39</u>, 2435 (1963).
- 9) H. Ishii, T. Tozyo, M. Nakamura, and H. Minato, Tetrahedron, 26, 2751 (1970)
- 10) H Ishii, T. Tozyo, and M Nakamura, Tetrahedron, 27, 4263 (1971)
- 11) H Ishii, T Tozyo, M Nakamura, and E Funke, Chem, Pharm Bull (Tokyo), 20, 203 (1972)
- 12) The 4-bromo structure was deduced from its transformation to 15, via 12 and 13
- 13) A large amount (74%) of LB was recovered unchanged
- 14) A similar isomerization has been reported on 3-oxoguaioxide (ref. 10), 3-oxo-4-epiguaioxide (ref 9), and 8-acetoxy-3-oxo-4-epiguaioxide (ref 9)